电解水制氢

电解水制氢

【范文精选】电解水制氢

【范文大全】电解水制氢

【专家解析】电解水制氢

【优秀范文】电解水制氢

范文一:水电解制氢工艺

工艺简述

水电解制氢设备工艺分,即氢气、氧气、电解液、原料纯水和冷却水等部分,设备上设有以下控制点,对各项工艺参数进行监控,现分述如下:

氢气系统

产品氢气由电解槽两端压板的氢气接口引出,与夹带的电解液一起进入氢分离器中进行分离,向上升起的氢气经氢气冷却器中,而电解液则滞留在氢分离器内。氢气冷却器为管壳式换热器,氢走管程,冷却水走壳程,在冷却器的氢出口处,配置有丝网捕集器,以便把氢气中的雾滴捕集下来,并返回到氢分离器中。氢出捕集器后进入到氢汽水分离器中,其冷凝液由排污阀排放。产品氢经气动薄膜调节阀输出。

本系统的检测点,

①氢槽温的检测:该检测点设在氢分离器出口管上,测得的信号送人到PLC后,在触摸屏上可显示出氢槽温。

②两分离器的液位差的检测:在氢、氧分离器的引讯口上各装有差压变送器,分别测定两个分离器的液位,两个差压变送器所测得的信号送人PLC后,经过运算,再输出相应的信号,由电气转化器转化成的气压信号,送到氢气动调节阀上,以调节该阀的阀位。以使两分离器的液位维持在设定的范围内。

③氢气温度的检测:装有双金属温度计,现场显示氢气的温度。

④氢气纯度的检测:经过干燥后的氧气经氢纯度分析仪的仪表.把测得的信号送人到PLC中,在触摸屏上可显示出氢气纯度及报警信号等。

⑤氢背压的检测:在氢薄膜调节阀的阀后管线上,装有电接点压力表,现场指示氢背压,并输出电信号至PLC中,当压力超过设定值时,便发出报警信号。

氧气系统

该系统与氢子系统的流程完全相同,检测点也是五个,功能略有不同。

①槽温的检测:显示,报警等功能。

②系统压力的检测:在氧分离器的气相引讯口上,装有压力变送器.所测信号转化为气动信号,再送到氧气动调节阀,以给出一个合适的阀位。

⑧氧温的检测:装有双金属温度计,现场显示氧气温度。

④氧气纯度的检测:经过干燥后的氧气经氧纯度分析仪一次仪表,把测得的信号送人到PLC中,在触摸屏上显示氧气纯度及报警信号等。

⑤系统压力的检测:在氧薄膜调节阀阀前的管线上,装有一个防爆电接点压力表,除现场显示压力外,还输出电信号至PLC,在压力超标时,输出的联锁信号可使系统停下来。 电解液系统

在水电解制氢过程中,电解液随着产品气被夹带到到氢、氧分离器中,通过碱液泵的强制循环,再返回到电解槽内。碱液泵的进口与氢、氧分离器的连通管相连,泵启动后,分离器中的电解液流经碱液冷却器,碱液经过滤器后,最终回到电解槽中。

电解反应的生成热是通过碱液循环的方法在碱液冷却器中被带走的。原料水的补充也是随电解液的循环而进到电解槽内的。

在本系统上,设置有两个检测点:

①碱温的检测:在碱液过滤器的出管线上,装有铂电阻,用以检测进入电解槽的碱液温度。测得的信号转化为气动信号送入到冷却水气动阀上,以调节此阀的阀位开度,控制冷却水的流量,保持碱液的温度。

②碱液循环量的检测:在碱液管线上,有流量计,该流量计现场指示碱液循环量,并输出测得的信号,如循环量低于某设定值,PLC就会输出报警及联锁信号,最终使系统自动停

原料水系统

在水电解过程中,原料水因分解成氢和氧而不断地消耗掉,为了持续生产,必须向系统内补充原料水。

原料水的补充是由补水泵来完成的,用柱塞泵补水,泵的启停是由两差压变送器测得的信号控制,当低于设定值时,PLC就输出启动泵,反之则停泵。

补水泵的人口管与水箱和碱箱的出口管线相连,通过启动补水泵.补到水电解制氢系统中,经止回阀进入到分离器的碱液中。

冷却水系统

冷却水从外管引入,水压应在0.2MPa以上,冷却水进入系统后,一路进人碱冷却器,再一路经冷却水气动调节阀后进入碱液冷却器中,该调节阀的阀位由铂电阻测得的碱温来控制,冷却水与碱液间逆向流动,冷却水出碱液冷却器后,进入回水总管中。此管直与外界的冷却水循环装置相连。

①冷却水水压的检测:在冷却水的入口管上,装有弹簧压力表,以检测冷却水的人口压力。

范文二:芯片厂水电解制氢

水电解制氢情况汇报

目前三号厂氢气用量180瓶/月,6寸线预计用量160瓶/月,每个钢瓶储气

5.3立方,平均每天氢气用量60立方。制氢电解槽可以选用5立方/小时的设备规格。

一. 硬件设施需求:

1. 40平方米独立厂房,与周围建筑距离15米以上。

2. 50kw电容量

3. 7吨/小时、5℃温差的冷却水

4.设施需要通少量压缩空气驱动,少量氮气吹扫。

硬件投入概算:

注:以上不含在安监局消防备案费用

二.运行成本分析:

1. 电解槽耗电量约 5kw.h/立方

2. 冷却水冷量耗能 8.19kw.h/立方÷3(能效比)=2.73kw.h/立方 水的比热是4.2×10^3焦/(千克× ℃),表示质量是1千克的水,温度升高(或降低)1℃,吸收(或放出)的热量是4.2×10^3焦.则:1000×4.2×10^3×1=4,200,000焦=4200千焦.一千瓦时=3600千焦 ;4200/3600=1.17KW*h

所以 1立方水下降一摄氏度需要1.17KW*h 制冷量 3. 冷却水扬程耗能 0.6kw.h/立方

一吨水抽一米高大约耗0.003度电,0.5MPa约扬程50米。计算软件选泵为1.8kw。

4.纯水成本忽略

5.设备维护保养 约每年1万

(1)定时巡检,观察有无异常。

(2)定期检测

电解液KOH碱液浓度,25~30% 3个月

纯水的电导率

(3)定期检查、校准:

容器、压力表、安全阀 1年/次

循环泵、加水泵 寿命5年

阀门 1年/次

分析仪表 半年/次

控制仪表 1年/次

(4) 定期更换:

分析仪表的硅胶和硼酸片 变色

干燥剂--分子筛 3年

(5)定期大修 5年以上

综上,水解制氢直接成本(仅计算理论能耗)为7.5元/立方,电价0.9元/kw.h。实际成本在18.5元以上。

钢瓶气每瓶单价(5.3立方气体)小于50元。

三. 其他厂家使用情况

因自己制氢的厂家很少,只了解了两家的使用情况

1. 厦门某半导体厂

2013年购入25立方/小时的水电解氢气装置,设备成本190万。工厂实际氢气使用量10立方/小时。电解槽实际使用时间不到一年,因成本与可靠性原因废弃,改用钢瓶氢气。

2. 杭州某半导体厂

2002年使用160/小时立方电解槽两台,后为增加可靠性又增加180/小时立方电解槽一台。因用气量大钢瓶供应不及采用电解槽方式供应,实际核算氢气成本为43元/立方。

今年已在改用鱼雷车供应氢气,废弃两台电解槽,只留一台备机应急。

氢气制造最经济的方法是天然气水蒸气重整、合成氨分解制氢。

范文三:电解水制氢的原理

第二节  电解水制氢的原理

一、氢气的工业制法

在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。

对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理

所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。d

1、电解水原理 e

在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留r在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。

在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水e

t能够顺利地电解成为氢气和氧气。

氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明:s

i(1)氢氧化钾是强电解质,溶于水后即发生如下电离过程:g

于是,水溶液中就产生了大量的K+和OH-。

e(2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下:R

K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au

在上面的排列中,前面的金属比后面的活泼。n(3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,U

而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位

=-1.71V,而K+的电极电位

=-2.66V,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。

(4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。

2、水的电解方程

在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。

范文四:电解水制氢的化工原理

电解水制氢的化工原理

一、氢气的工业制法

在工业上通常采用如下几种方法制取氢气;一是将水蒸气通过灼热的焦炭(碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。

二 电解水制氢的化学原理

所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。而在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。

在电解水时,由于纯水的电离很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。

氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明:

(1) 氢氧化钾是强电解质,溶于水后即发生如下电离过程: KOH —— K+ + OH-

于是水溶液中就产生了大量的K+和OH-

(2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下:

K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au

在上面的排列中,前面的金属比后面的活泼。

(3) 在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反

之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。氢离子的电极电位为-1.71V,而钾离子的电极电位为-2.66V,所以,在水溶液中同时存在氢离子和钾离子时,氢离子将在阴极上首先得到电子而变成氢气,而钾离子则仍留在溶液中。

(4) 水是一种弱电解质,难以电离,而当水中溶有氢氧化钾时,在

电离的钾离子周围则围绕着极性的水分子而成为水合钾离子,而且因钾离子的作用使水分子有了极性方向。在直流电作用下,钾离子带有极性方向的水合分子一同迁向阴极,这时氢离子首先得到电子而成为氢气。因此在以氢氧化钾为电解质的电解过程中,实际上是水被电解,产生氢气和氧气,而氢氧化钾只起运载电荷的作用。

1.2电解电压

在电解水时,加在电解池上的直流电压必须大于水的理论分解电压,以便能克服电解池中的各种电阻电压降和电极极化电动势。电极极化电动势是阴极氢析出时的超电位与阳极氧极析出时的超电位之和,因此,水电解电压U可表示为:U=U0+IR+氢超电位+氧超电位 式中U0——水的理论分解电压,V;

I——电解电流,A

R——电解池的总电阻,Ω

从能量消耗的角度看,应该尽可能地降低电解电压。影响电解电压的因素主要有以下三个方面:

(1)理论分解电压(在0.1MPa和25℃时,约为1.23V),它随温度的升高而降低,随压力的升高而增大,压力每升高10倍,电压约增大43mV

(2)氢、氧超电位。影响氢、氧超电位的因素很多,首先,电极材料和电极的表面状态对它的影响较大,如铁、镍的氢超电位就比铅、锌、汞等低,铁、镍的氧超电位也比铅低。与电解液接触面积越大或电极表面越粗糙,产生的氢、氧超电位就越小。其次,电解时的电流密度增大,超电位会随之增大,温度的上升也会引起超电位的增大。此外,超电位还与电解质的性质、浓度、及溶液中的杂质等因素有关,如在镍电极上,稀溶液的氧超电位大于浓溶液的氧超电位。

为了降低氢、氧超电位,可以采取一些方法。如提高工作温度及采用合适的电极材料等。此外,适当增大电极的实际表面积或使电极表面

粗糙,都可在不同程度上降低电极电阻和超电位,从而达到降低工作电压的目的。

(3)电阻电压降。电解池中的总电阻包括电解液的电阻、隔膜电阻、电极电阻和接触电阻等,其中前两者为主要因素。隔膜电阻电压降取决于材料的厚度和性质。采用一般的石棉隔膜,电流密度为2400A/m2时,隔膜电阻上的电压降约为0.25-0.30V,当电流密度再增大时,该电压降还会增大到0.5V左右。电解液的导电率越高,电解液中的电压降就越小。对电解液来说,除要求其电阻值小以外,还要求它在电解电压下不分解;不因挥发而与氢、氧一并逸出;对电解池材料无腐蚀性;当溶液的PH值变化时,应具有一定的缓冲性能。

多数的电解质在电解时易分解,不宜在电解水时采用。硫酸在阳极生成过硫酸和臭氧,腐蚀性很强,不宜采用。而强碱能满足以上要求,所以工业上一般都以KOH或NaOH水溶液作为电解液。KOH的导电性能比NaOH好,但价格较贵,在较高温度时,对电解池的腐蚀作用亦较NaOH的强。过去我国常采用NaOH作电解质,但是,鉴于目前电解槽的材料已经能抗KOH的腐蚀,所以,为节约电能,已经普遍趋向采用KOH溶液作为电解液。此外,在电解水的过程中,电解液中会含有连续析出的氢、氧气泡,使电解液的电阻增大。电解液中的气泡容积与包括气泡的电解液容积的百分比称作电解液的含气度。含气度与电解时的电流密度,电解液粘度、气泡大小、工作压力和电解池结构等因素有关。增加电解液的循环速度和工作压力都会减少含气度;增加电流密度或工作温度升高都会使含气度增加。在实际

情况下,电解液中的气泡是不可避免的,所以电解液的电阻会比无气泡时大得多。当含气度达到35%时,电解液的电阻是无气泡时的2倍。降低工作电压有利于减少电能消耗,为此应采取有效措施来降低氢、氧超电位和电阻电压降。一般情况下,在电流较小时,前者是主要因素;而在电流较大时,后者将成为主要因素。

电解槽在高工作压力下运行时,电解液含气度降低,从而使电解液电阻减小,为此已经研制出可在3MPa压力下工作的电解槽。但是工作压力表也不宜过高,否则会增大氢气和氧气在电解液中的溶解度,使它们通过隔膜重新生成水,从而降低电流效率。提高工作温度同样可以使电解液电阻降低,但随之电解液对电解槽的腐蚀也会加剧。如温度大于90℃时,电解液就会对石棉隔膜造成严重损害,在石棉隔膜形成可溶性硅酸盐。为此,已经研制出了多种搞高温腐蚀的隔膜材料,如镍的粉末冶金薄片和钛酸钾纤维与聚四氟乙烯粘结成的隔膜材料,它们可以在150℃的碱液中使用。为了降低电解液的电阻,还可以采取电解池的电流密度,加快电解液的循环速度,适当减小电极间距离等方法。

三、 制氢设备的制氢量衡算和电能消耗

1. 法拉第定律

电解水溶液制氢时,在物质量上严格遵守法拉第定律:各种不同的电解质溶液,每通过96485.309C的电量,在任一电极上发生得失1mol电子的电极反应,同时与得失1mol电子相对应的任一电极反应的物质量亦为1mol。

F=96485.309C/MOL称为法拉第常数,它表示每摩尔电子的电量。在一般计算中,可以近似取F=96500C/MOL。根据法拉第定律,可以得到下式:m=KIt=KQ

式中 K——表示1小时内通过1安培电流时析出的物质量,g/(A.h) I——电流,A;

T——通电时间,h;

M——电极上析出的物质的量,g;

Q——通过电解池的电荷量,A.h

由于库仑的单位很小,所以工业上常用的电荷量单位是安培.小时,它与法拉第常数F的关系是:

1F=96500/3600=26.8 A.h

2. 制氢量衡算

从法拉第定律可知,26.8 A.h电荷量能产生0.5mol的氢气,在标准状态下,0.5mol氢气占有的体积是11.2L,则1 A.h电荷量在一个电解小室的产气量应为

V0H2=11.2/26.8=0.418L/(A.h)=0.000418 m3/(A.h) 如果考虑电流效率,那么每台电解槽每小时的实际产氢量应当: VH2=0.000418mItη m3

式中 M——电解槽的电解小室数,

I——电流,A

T——通电时间,H;

η——电流效率,%

同样地,可以计算出氧气的产气量,它正好是氢气量的一半。 VO2=0.000209 mItη m3

3. 电能的消耗

电能消耗W与电压U和电荷量Q成正比,即

W=QU

根据法拉第定律,在标准状况下,每产生1 m3的氢气的理论电荷量为: Q0=2.68×1000/11.2=2393 A.h

一,电极电势的产生 — 双电层理论

德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double layer theory)解释电极电势的产生的原因。当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。金属性质愈活泼,这种趋势就愈大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度愈大,这种趋势也愈大。在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏)。 如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。

电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。

2.标准电极电势

为了获得各种电极的电极电势数值,通常以某种电极的电极电势作标准与其它各待测电极组成电池,通过测定电池的电动势, 而确定各种不同电极的相对电极电势E值。1953年国际纯粹化学与应用化学联合会(IUPAC)的建议,采用标准氢电极作为标准电极,并人为地规定标准氢电极的电极电势为零。

(1)标准氢电极 电极符号: Pt|H2(101.3kPa)|H+(1mol.L-1)

电极反应: 2H+ + 2e = H2(g)

EφH+/ H2 = 0 V

右上角的符号“φ”代表标准态。

标准态要求电极处于标准压力(101.325kPa)下,组成电极的固体或液体物质都是纯净物质;气体物质其分压为101.325kPa;组成电对的有关离子(包括参与反应的介质)的浓度为1mol.L-1(严格的概念是活度)。通常测定的温度为298K。

(2) 标准电极电势 用标准氢电极和待测电极在标准状态下组成电池,测得该电池的电动势值,并通过直流电压表确定电池的正负极,即可根据E池 = E(+)- E(-)计算各种电极的标准电极电势的相对数值。

例如在298k,用电位计测得标准氢电极和标准zn电极所组成的原电池的电动势(E池)为0.7628v,根据上式计算Zn2+/Zn电对的标准电极为-0.7628v。用同样的办法可测得Cu2+/Cu电对的电极电势为+0.34v。

电极的 E⊖为正值表示组成电极的氧化型物质,得电子的倾向大于标准氢电极中的H+,如铜电极中的 Cu2+;如电极的为负值,则组成电极的氧化型物质得电子的倾向小于标准氢电极中的H+,如锌电极中的Zn2+。

实际应用中,常选用一些电极电势较稳定电极如饱和甘汞电极和银-氯化银电极作为参比电极和其它待测电极构成电池,求得其它电极的电势。饱和甘汞电极的电极电势为0.2412V。银-氯化银电极的电极电势为0.2223V。

3. 标准电极电势表

将不同氧化还原电对的标准电极电势数值按照由小到大的顺序排列,得到电极反应的标准电极电势表。其特点有:

(l)一般采用电极反应的还原电势,每一电极的电极反应均写成还原反应形式,即:氧化型 + ne = 还原型;

(2)标准电极电势是平衡电势,每个电对E⊖值的正负号,不随电极反应进行的方向而改变。

(3)Eφ值的大小可用以判断在标准状态下电对中氧化型物质的氧化能力和还原型物质的还原能力的相对强弱,而与参与电极反应物质的数量无关。例如: I2+2e =2I- Eφ= +0.5355V

1/2I2+e = I- Eφ= +0.5355V

(4)Eφ值仅适合于标准态时的水溶液时的电极反应。对于非水、高温、固相反应,则不适合。

二,电极电势的应用

(一)、判断氧化剂和还原剂的相对强弱

在标准状态下氧化剂和还原剂的相对强弱,可直接比较Eφ值的大小。

Eφ值较小的电极其还原型物质愈易失去电子,是愈强的还原剂,对应的氧化型物质则愈难得到电子,是愈弱的氧化剂。Eφ值愈大的电极其氧化型物质愈易得到电子,是较强的氧化剂,对应的还原型物质则愈难失去电子,是愈弱的还原剂。

在标准电极电势表中, 还原型的还原能力自上而下依次减弱,氧化型的氧化能力自上而下依次增强。

[例1] 在下列电对中选择出最强的氧化剂和最强的还原剂。并指出各氧化态物种的氧化能力和各还原态物种的还原能力强弱顺序。

MnO4-/Mn2+、Cu2+/Cu、Fe3+ /Fe2+、I2/I-、Cl2/Cl-、Sn4+/Sn2+

(二)、判断氧化还原反应的方向

1.根据Eφ值,判断标准状况下氧化还原反应进行的方向。

通常条件下,氧化还原反应总是由较强的氧化剂与还原剂向着生成较弱的氧化剂和还原剂方向进行。从电极电势的数值来看,当氧化剂电对的电势大于还原剂电对的电势时,反应才可以进行。反应以“高电势的氧化型氧化低电势的还原型”的方向进行。在判断氧化还原反应能否自发进行时,通常指的是正向反应。

2.根据电池电动势Eφ池值,判断氧化还原反应进行方向。

任何一个氧化还原反应,原则上都可以设计成原电池。利用原电池的电动势可以判断氧化还原反应进行的方向。由氧化还原反应组成的原电池,在标准状态下,如果电池的标准电动势 >0, 则电池反应能自发进行;如果电池的标准电动势 <0, 则电池反应不能自发进行。在非标准状态下,则用该状态下的电动势来判断。

从原电池的电动势与电极电势之间的关系来看,只有 > 时,氧化还原反应才能自发地向正反应方向进行。也就是说,氧化剂所在电对的电极电势必须大于还原剂所在电对的电极电势,才能满足E >0的条件。

从热力学讲电池电动势是电池反应进行的推动力。当由氧化还原反应构成的电池的电动势Eφ池大于零时,则此氧化还原反应就能自发进行。因此,电池电动势也是判断氧化还原反应能否进行的判据。

电池通过氧化还原反应产生电能,体系的自由能降低。在恒温恒压下,自由能的降低值(-△G)等于电池可能作出的最大有用电功(W电):

-△G=W电=QE=nFE池

即△G=-nFE池

在标准状态下,上式可写成:

△Gφ = -nFEφ池

当Eφ池 为正值时,△Gφ为负值,在标准状态下氧化还原反应正向自发进行;当Eφ池为负值时,△Gφ为正值,在标准状态下反应正向非自发进行,逆向反应自发进行。E或Eφ愈是较大的正值,氧化还原反应正向自发进行的倾向愈大。E池或Eφ池愈是较大的负值,逆向反应自发进行的倾向愈大。

[例2] 试判断反应 Br + 2Fe 2Fe +2Br 在标准状态下进行的方向。 解:查表知:Fe + e Fe = +0.771V

Br + 2e 2Br = +1.066V

由反应式可知:Br 是氧化剂,Fe 是还原剂。

故上述电池反应的 = +1.066-0.771=0.295V>0

(三).判断反应进行的限度——计算平衡常数

一个化学反应的完成程度可从该反应的平衡常数大小定量地判断。因此,把标准平衡常数Kφ和热力学吉布斯自由能联系起来。

△Gφ=-2.303RTlgKφ

△Gφ=-nFEφ

则: -nFEφ = 2.303RTlgKφ

标准平衡常数Kφ和标准电动势Eφ之间的关系式为:

-nFEφ

lgKφ = ————————

2.303RT

R为气体常数,T为绝对温度,n为氧化还原反应方程中电子转移数目,F为法拉第常数。

该式表明,在一定温度下,氧化还原反应的平衡常数与标准电池电动势有关,与反应物的浓度无关。Eφ越大,平衡常数就越大,反应进行越完全。因此,可以用Eφ值的大小来估计反应进行的程度。一般说,Eφ≥0.2~0.4V的氧化还原反应,其平衡常数均大于106( K>106 ),表明反应进行的程度已相当完全了。Kφ值大小可以说明反应进行的程度,但不能决定反应速率。

三,影响电极电势的因素

影响电极电势的因素是离子的浓度、溶液的酸碱性、沉淀剂和络合剂,判断的因素是能斯特方程。

能斯特方程式:标准电极电势是在标准状态下测定的。如果条件改变,则电对的电极电势也随之发生改变。电极电势的大小,首先取决于电极的本性,它是通过标准电极电势 来体现的。其次,溶液中离子的浓度(或气体的分压)、温度等的改变都会引起电极电势的变化。它们之间的定量关系可由能斯特方程式来表示;

四,元素电势图及其应用

大多数非金属元素和过渡元素可以存在几种氧化值,各氧化值之间都有相应的标准电极电势。可将其各种氧化值按高到低(或低到高)的顺序排列,在两种氧化值之间用直线连接起来并在直线上标明相应电极反应的标准电极电势值,以这样的图形表示某一元素各种氧化值之间电极电势变化的关系图称为元素电势图,因是拉特默(Latimer)首创,故又称为拉特默图。根据溶液pH值的不同,又可以分为两大类: (A表示酸性溶液)表示溶液的pH=0; (B表示碱性溶液)表示溶液的pH=14。书写某一元素的电势图时,既可以将全部氧化值列出,也可以根据需要列出其中的一部分。〖例如氯的元素电势图〗。

在元素电位图的最右端是还原型物质,如Cl ,最左端是氧化型物质,如ClO 。中间的物质,相对于右端的物质是氧化型,相对于左端的物质是还原型,例如Cl 相对于Cl 是氧化型,相对于ClO 是还原型。

元素电势图在主要应用:

1.判断歧化反应是否能进行

所谓歧化反应,就是在同一个元素中,一部分原子(或离子)被氧化,另一部分原子(或离子)被还原的反应。若在下列元素电势图中

Eφ左 Eφ右

A —— B —— C

若Eφ右>Eφ左 ,其中间价态B可自发地发生岐化反应,生成A和C。且Eφ池越大,歧化反应程度越大。相反地,若Eφ右<Eφ左,则不能发生歧化反应。 〖举例〗:

2.计算未知标准电极电势

根据元素电势图可从几个相邻氧化态电对的已知标准电极电势,求算不相邻氧化态电对的未知标准电极电势。例如某元素电势图为:

Eφ1 Eφ2

A —— B —— C

│ Eφ │

不同电对的标准电极电势关系:

n1 Eφ1 + n2Eφ2

Eφ= ————————

N

1、什么叫元素电势图

例:已知:φ(O2/H2O2) = 0.682V, φ(H2O2/H2O) = 1.77V,φ(O2/H2O) = 1.229V

元素电势图氧元素)

0 -1 -2

O2 0.682 H2O2 1.77 H2O

1.229

将元素不同氧化态,按氧化数由高到低顺序排列成行;(与电对的表示相一致) 在两物质间用直线连接表示一个电对;在直线上标明此电对的标准电极电势。

2、元素电势图的应用

从元素电势图可清楚看出某元素各氧化态的氧化还原性以及介质对氧化还原性的影响;

1.56 1.49

φθA ClO4— +1.19 ClO3— +1.21 HClO2 +1.64 HClO +1.63 Cl2 +1.36 Cl—

1.37 1.45

0.76 0.89

φθB ClO4— +0.36 ClO3— +0.33 ClO2— +0.66 ClO— +0.42 Cl2 +1.36 Cl—

0.52 0.62

φθA> 1V ;除φθ(Cl2/Cl—)外,φθB< 1V

∴氯的含氧酸作氧化剂时,应在酸性介质中进行;作还原剂时,应在碱性介质中进行。

3、判断歧化反应能否自发进行

元素的一种氧化态同时向较高和较低的氧化态转化的过程称为歧化反应。 例1: φθB ClO— 0.42 Cl2 1.36 Cl—

φθB

2ClO— + 2H2O + 2e =Cl2 + 4OH— 0.42

Cl2 + 2e =2Cl— 1.36

∴歧化反应能够进行。

Cl2 + 2 OH— —→ ClO—+ Cl— + H2O

例2: Cu2+ 0.159 Cu+ 0.52 Cu

2 Cu+ —→ Cu2+ + Cu

∴φθ右﹥φθ左,歧化反应能够自发进行。

4、判断歧化反应的逆反应能否自发进行

例3:φθA HClO 1.63 Cl2 1.36 Cl—

φθA

Cl2 + 2e =2Cl— 1.36

2HClO + 2H+ + 2e =Cl2 + 2H2O 1.63

HClO + Cl— + H+ —→ Cl2 + H2O

∴φθ左﹥φθ右,歧化反应的逆反应能够自发进行。

即:

A B C

φθ左﹤φθ右,B —→A + C,歧化反应

φθ左﹥φθ右,A + C —→ B,歧化反应的逆反应

Sn4+ 0.154 Sn2+ -0.136 Sn

Sn4+ + Sn —→ 2Sn2+

Fe3+ 0.771 Fe2+ -0.44 Fe

2Fe3+ + Fe —→ 3Fe2+

元素电势图的用途:

1.判断歧化反应是否能够进行

歧化反应即自身氧化还原反应:它是指在氧化还原反应中,氧化作用和还原作用是发生在同种分子内部同一氧化值的元素上,也就是说该元素的原子(或离子)同时被氧化和还原。

由某元素不同氧化值的三种物质所组成两个电对,按其氧化值高低排列为从左至右氧化值降低。

假设B能发生歧化反应,那么这两个电对所组成的电池电动势:

B变成C是获得电子的过程,应是电池的正极;B变成A是失去电子的过程,应是电池的负极,所以

= - > 0 即 >

假设B不能发生歧化反应,同理:

= - < 0 即 <

〖两例歧化反应〗

由上两例可推广为一般规律:

在元素电势图 中,若 > ,物质B将自发地发生歧化反应,产物为A和C;若 < ,当溶液中有A和C存在时,将自发地发生歧化反应的逆反应,产物为B。

2.从已知电对求未知电对的标准电极电势

假设有一元素的电势图:

根据标准自由能变化和电对的标准电极电势关系:

ΔG = -n F

ΔG = -n F

ΔG = -n F

n 、n 、n 分别为相应电对的电子转移数,其中n = n + n + n 则 ΔG = - n F = -(n + n + n ) F

按照盖斯定律,吉布斯自由能是可以加合的,即:

ΔG = ΔG +ΔG +ΔG

于是整理得:-(n + n + n ) F = (- n F )+(- n F )+(- n F ) 若有i个相邻电对,则

根据此式,可以在元素电势图上,很直观地计算出欲求电对的 值。

[例6-16] 已知298K时,氯元素在碱性溶液中的电势图,试求出 [ClO /Cl ],

[ClO /ClO ], [ClO /Cl ]的值。

范文五:电解水制氢的原理

电解水制氢的原理

一、氢气的工业制法

在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。

对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。

二、电解水制氢原理

所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。

1、电解水原理

在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。

在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。

氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明:

(1)氢氧化钾是强电解质,溶于水后即发生如下电离过程:

于是,水溶液中就产生了大量的K和OH。

(2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。

(3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前+-

的金属离子,由于其电极电位低而难以得到电子变成原子。H的电极电位

=-1.71V,而K+的电极电位=-2.66V,所以,在水溶液中同时存在H+和K+时,+H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。

(4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。

2、水的电解方程

在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。

图8-3 碱性水溶液的电解

(1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其放电反应为:

(2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为:

阴阳极合起来的总反应式为:

电解

所以,在以KOH为电解质的电解过程中,实际上是水被电解,产生氢气和氧气,而KOH只起运载电荷的作用。

三、电解电压

在电解水时,加在电解池上的直流电压必须大于水的理论分解电压,以便能克服电解池中的各种电阻电压降和电极极化电动势。电极极化电动势是阴极氢析出时的超电位与阳极氧极出时的超电位之和。因此,水电解电压U可表示为:

式中U0——水的理论分解电压,V;

I——电解电流,A;

R——电解池的总电阻,Ω;

——氢超电位,V; ——氧超电位,V。

从能量消耗的角度看,应该尽可能地降低电解电压。下面讨论影响电解电压的几个因素:

(1)水的理论分解电压UO。热力学的研究得出:原电池所做的最大电功等于反

应处由能变的减少,即:

式中

——标准状态下电池反应的吉布斯自由能变,J/mol;

n——反应中的电子转移数;

F——法拉第常数,96500C/mol;

E——标准状态下反应的标准电动势,V。

在生成水的化学反应中,自由能变为-474.4kJ/mol,即

2H2(g)+O2(g)=2H2O (1)

这是一个氧化还原反应,在两个电极上的半反应分别为:

O2+4H++4e=2H2O

2H2=4H++4e 0

电子转移数n=4,由=-NFE0得

-474.4×103=--4×96500E0

可见,在0.1MPa和25℃时,U0=1.23V;它是水电解时必须提供的最小电压,它

随温度的升高而降低,随压力的升高而增大,压力每升高10倍,电压约增大43mV.

(2)氢、氧超电位和。影响氢、氧超电位的因素很多。首先,电极材料和电极的表面状态对它的影响较大,如铁、镍的氢超电位就比铅、锌、汞等低,铁、镍的氧超电位也比铅低。与电解液接触面积越大或电极表面越粗糙,产生的氢、氧超电位就越小。其次,电解时的电流密度增大,超电位会随之增大,温度的上升也会引起超电位的增大。此外,超电位还与电解质的性质、浓度及溶液中的杂质等因素有关,如在镍电极上,稀溶液的氧超电位大于浓溶液的氧超电位。 为了降低氢、氧超电位,可以采取一些方法。如提高工作温度及采用合适的电极材料等。此外,适当增大电极的实际表面积或使电极表面粗糙,都可在不同程度上降低电极电阻和超电位,从而达到降低工作电压的目的。

(3)电阻电压降。电解池中的总电阻包括电解液的电阻、隔膜电阻、电极电阻和接触电阻等,其中前两者为主要因素。隔膜电阻电压降取决于材料的厚度和性质。采用一般的石棉隔膜,电流密度为2400A/m2时,隔膜电阻上的电压降约为0.25~0.30V,当电流密度再增大时,该电压降还会增大到0.5V左右。电解液的导电率越高,电解液中的电压降就越小。对电解液来说,除要求其电阻值小以外,还要求它在电解电压下不分解;不因挥发而与氢、氧一并逸出;对电解池材料无腐蚀性;当溶液的pH值变化时,应具有一定的缓冲性能。

多数的电解质在电解时易分解,不宜在电解水时采用。硫酸在阳极生成过硫酸和臭氧,腐蚀性很强,不宜采用。而强碱能满足以上要求,所以工业上一般都以KOH或NaOH水溶液作为电解液。KOH的导电性能比NaOH好,但价格较贵,在较高温度时,对电解池的腐蚀作用亦较NaOH的强。过去我国常采用NaOH作电解质,但是,鉴于目前电解槽的材料已经能抗KOH的腐蚀,所以,为节约电能,已经普遍趋向采用KOH溶液作为电解液。

此外,在电解水的过程中,电解液中会含有连续析出的氢、氧气泡,使电解液的电阻增大。电解液中的马泡容积与包括气泡的电解液容积的百分比称作电解液的含气度。含气度与电解时的电流密度,电解液粘度、气泡大小、工作压力和电解池结构等因素有关。增加电解液的循环速度和工作压力都会减少含气度;增加电流密度或工作温度升高都会使含气度增加。在实际情况下,电解液中的气泡是不可避免的,所以电解液的电阻会比无气泡时大得多。当含气度达到35%时,电解液的电阻是无气泡时的2倍。

降低工作电压有利于减少电能消耗,为此应采取有效措施来降低氢、氧超电位和电阻电压降。一般情况下,在电流较小时,前者是主要因素;而在电流较大时,后者将成为主要因素。

电解槽在高工作压力下运行时,电解液含气度降低,从而使电解液电阻减小,为此已经研制出可在3MPa压力下工作的电解槽。但是工作压力也不宜过高,否则会增大氢气和氧气在电解液中的溶解度,使它们通过隔膜重新生成水,从而降低电流效率。提高工作温度同样可以使电解液电阻降低,但随之电解液对电解槽的腐蚀也会加剧。如温度大于90℃时,电解液就会对石棉隔膜造成严重损害,在石棉隔膜上形成可溶性硅酸盐。为此,已经研制出了多种抗高温腐蚀的隔膜材料,如镍的粉末冶金薄片和钛酸钾纤维与聚四氟乙烯粘结成的隔膜材料,它们可以在150℃的碱液中使用。为了降低电解液的电阻,还可以采取降低电解池的电流密度,加快电解液的循环速度,适当减小电极间距离等方法。

四、制氢设备的制氢量衡算和电能消耗

1、法拉第定律

电解水溶液制氢时,在物质量上严格遵守法拉第定律:各种不同的电解质溶液,每通过96485.309C的电量,在任一电极上发生得失1 mol电子的电极反应,同时与得失1 mol电子相对应的任一电极反应的物质量亦为1mol。

F=96485.309C/mol称为法拉第常数,它表示每摩尔电子的电量。在一般计算中,可以近似取F=96500C/mol。根据拉第定律,可以得到下式:

M=kIt=kQ

式中 k——表示1h内通过1A电流时析出的物质量,g/(A·h);

I——电流,A;

t——通电时间,h;

m——电极上析出的物质的质量,g;

Q——通过电解池的电荷量,A·h。

由于库仑单位很小,所以工业上常用的电荷量单位是安培·小时,它与法拉第常数F的关系是:

1F=96500/3600=26.8 A·h

2、制氢量衡算

从法拉第定律可知,26.8A·h电荷量能产生0.5mol的氢气,在标准状态下,0.5mol氢气占有的体积是11.2L,则1A·h电荷量在一个电解小室的产气量应为

(A·h) 应为:

如果考虑电流效率,那么每台电解槽每小时的实际产氢量

m3

式中 m——电解槽的电解小室数,m=

I——电流,A;

t——通电时间,h;

——电流效率,%。 同样地,可以计算出氧气的产气量

3、电能的消耗

电能消耗W与电压U和电荷量Q成正比,即

W=QU ,它正好是氢气产气量 的1/2。

根据法拉第定律,在标准状况下,每产生1m3的氢气的理论电荷量Q0为:

因此,理论电能消耗W0为:

式中:U0为水的理论分解电压,U0=1.23V。

在电解槽的实际运行中,其工作电压为理论分解电压的1.5~2倍,而且电流效率也达不到100%,所以造成的实际电能消耗要远大于理论值。目前通过电解水装置制得1m3氢气的实际电能消耗为4.5~5.5kW·h。

4、电解用水消耗

电解用水的理论用量可用水的电化学反应方程计算:

通电

2H2O

KOH

2×18g 2×22.4L

x 1000L

式中:x为标准状况下,生产1m3氢气时的理论耗水量,g;22.4L为1mol氢气在标准状况下的体积。

x/18=1000/22.4

x=804g

在实际工作过程中,由于氢气和氧气都要携带走一定的水分,所以实际耗水量稍高于理论耗水量。目前生产1m3氢气的实际耗水量约为845~880g。

2H2↑ + O2↑

范文六:水电解制氢操作要点

水电解制氢操作要点

1、水电解槽工作温度。通过氧侧温度变送器把温度信号传送给PLC系统,数据经处理后,控制气动薄膜调节阀来监控碱液温度而实现工作温度保持在80~90℃。工作温度过高会加速水电解槽内腐蚀,缩短石棉橡胶垫的使用寿命,影响运行周期;温度过低会使电解液电阻增加,极间电压升高,能耗增大。

2、水电解槽工作压力。通过压力变送器把压力信号传递给PLC系统,数据经处理后,控制氧侧气动薄膜调节阀来控制槽体压力。根据设备需求设定工作压力大小。

3、水电解槽氢氧液位差。由差压变送器把液位差信号传递给PLC系统,经数据处理后,控制氢侧气动薄膜调节阀来控制液位差小于1000Pa。若液位大于1000Pa则一侧压力高、液位低,水电解槽碱液

循环回路中断,槽体发生喷碱现象,甚至石棉隔膜布露出液面,造成氢氧气混合的危险。

4、水电解槽分离器液位。水电解过程中不断地消耗纯水,因而要及时补给。一般控制分离器液位在1/3~2/3,由补水泵自动启闭控制。

5、除氧器温度。除去水电解制氢中的微量氧气,常温控制。一般情况下除氧器实际温度显示为产品氢气与微量氧气反应生成水放出热量的温度。若含氧量超标,可将除氧器中的催化剂进行活化再生后继续投入使用。

6、当出现下列情况之一时,应停机检查: 氢气或氧气的纯度下降至允许值下限时; 当回收利用氧气时,氧气中氢浓度超过规定值时; 水电解槽的电解小室电压,经多次测定均不正常时;

水电解槽出口氢侧/氧侧气体压力不平衡,其压力差超过允许值时;

氢气压缩机进气侧的氢气压力低于允许值时; 电力供应故障;

监测的空气中氢浓度超过1.0%时。

7、气密性试验,对压力型水电解制氢系统以洁净空气或氮气进行气密性试验。气密性试验压力为设计压力,试验开始后逐渐升压,达到规定压力后,保持30min,检查所有连接处,焊缝、法兰、垫片等处,以无漏气为合格。

对常压型水电解制氢系统的气密性试验压力为0.05MPa或注满水静置试验。

8、水电解槽的总直流电流(电压)用直流电压表检测。电流(电压)表的精度等级不低于0.5级。

9、产品进出厂时,应进行充氮保护,充氮压力≥0.05MPa。此类设备的开口处应进行封堵。

10、制氢设备性能试验应在设备连续稳定运行4h后进行,测试气体产量、纯度和单位制氢直流电耗须同步进行,每30min测试一次,连续测4次,取其平均值。

试验用仪器、仪表精度应不低于下表规定。

氢、氧气体纯度测试的取样部位应在制氢设备的氢、氧气体取样口。用电流表测试流过电解槽总直流工作电流,测试部位在电解槽两

端或直流变换器的直流接线点。电解槽的直流工作电压的测试部位在电解槽正负极接点。

11、制氢设备应存放在通风、干燥的库房内或有遮盖的场所,离地至少100mm;存放期超过规定时间,按产品说明书的有关规定进行检查、维护。

范文七:水电解制氢技术进展

开发展望

TECHNOLOGYANDMARKET

费用和能量消耗,进行工业化生产试点后再推广应用,同时随着增殖反应堆出现的核能,将会使水电解制氢有可能成为制氢领域中最有力的竞争者之一。

氢气是工业气体中的一个重要品种,在化工、化肥、石化、能源、电子、冶金、食品、机械、航空航天、核工业等诸多领域中都有广泛的应用。利用水电解制取氢气除可作为新世纪的一种清洁能源被开发利用外,在合成氨、甲醇等化工行业,水电解制氢可以作为一个先进适用的单元技术而优化组合到工艺流程中,电解水产生的氧气还可以用于粉煤气化、硝酸硫酸生产、钢铁冶炼等其他一些大量需氧的工业过程。我国不少地区水电资源十分丰富,可以建设水力发电电站来提供电力,再利用电力进行水电解制氢。

在甲醇生产中,用粉煤纯氧加压气化制得的合成气CO+H2占气体总量的90%,此时H2/CO=0.42,而甲醇合成化学当量比H2/CO=2,这时需配入大量的氢,才能达到此当量比。若将过量的CO变换成氢来实现,则会产生大量的CO2排放,理论上每吨甲醇排放出的CO2量为1.526t,对环境造成极大的污染。而若采用水电解氢来配入氢气,合成气中的CO就不需要变换成H2和CO2,每吨甲醇原料气配入777m3氢气,就可以达到甲醇合成所需的化学当量比,从而实现CO2的零排放,同时煤制CO+H2合成气也可以全部直接加以利用,节省了原料煤的消耗。在水电资源丰富的地区,采用粉煤气化加水电解制氢生产甲醇,

水电解制氢技术早在上世纪初就已开发成功,

煤价按300元/t,电价按0.35元/kW・h计,生产成本比用天然气为原料的低100元左右,并具有良好的社会效益、环保效益和经济效益。

近年来,国内在水电解制氢方面作了大量的研究工作,最近取得了突破性的进展。东北某科研单位近日研制出用海水电解制氢的新技术,从根本上解决了水电解制氢耗电大的难题,电解每立方米氢气耗电为2.51kW・h。该技术的各项指标居于世界领先水平,同时在制取氢气的过程中还伴有氯气和火碱等化工原料产生,也进一步降低了氢气的制取成本。据测算,建设一套日产1万m3氢气的生产装置,总投资约需人民币1亿元,建设周期两年,投产后第一年产值约3700万元,第二年7000万元,第三年8000万元以上,不到五年可收回全部投资。

联系人:汪家铭

地址:四川成都青白江区川化1村37栋24号邮编:610300电话:(028)83621163

电子邮箱:wjming56@sohu.com.

2006/11

电解制氢技术进展及应用

20世纪70年代,国外曾在水电资源丰富的地区,用

于生产合成氨。后来由于天然气、石油、煤炭制合成氨技术发展很快,且由于水电解制氢的成本过高,无法商业性的大规模利用,使水电解制氢技术未有大的进展,仍停滞在原有水平上。

水电解氢的工艺原理,是利用两个不起化学反应的电极,用一种无机酸或一种碱金属氢氧化物的水溶液传导直流电流时,在阴极生成氢气,在阳极生成氧气。现代工业化水电解制氢工艺通常是采用所有电极并联连接的单极性电解槽和所有电极串联连接的双极性电解槽进行的,操作温度一般低于80℃。当电流密度高至3229A/m时,产生每立方米氢气耗・电3.99~5.12kWh。

多年来,水电解制氢技术自开发以来一直进展不大,其主要原因是需要耗用大量的电能,电价的昂贵,使得世界上除个别地区外,合成氨生产用水电解制氢都不经济,吨氨的电耗高达3500kW・h左右。但是如果水电解制氢技术能结合现代科学开发成果,设计出先进可靠的生产装置,进一步降低设备投资

技术与市场

范文八:电解水制氢的原理

电解水制氢的原理

电解水制氢的原理一、氢气的工业制法

在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。

对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。

二、电解水制氢原理

所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。

1、电解水原理

在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。

在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。

氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明:

(1) 氢氧化钾是强电解质,溶于水后即发生如下电离过程:

于是,水溶液中就产生了大量的K+和OH-。

(2) 金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下:

K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au

在上面的排列中,前面的金属比后面的活泼。

(3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成

原子。H+的电极电位=-1.71V,而K+的电极电位=-2.66V,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。

(4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。

2、水的电解方程

在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。

图8-3 碱性水溶液的电解

(1) 阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,

其放电反应为:

(2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为:

阴阳极合起来的总反应式为:

电解

所以,在以KOH为电解质的电解过程中,实际上是水被电解,产生氢气和氧气,而KOH只起运载电荷的作用。

三、电解电压

在电解水时,加在电解池上的直流电压必须大于水的理论分解电压,以便能克服电解池中的各种电阻电压降和电极极化电动势。电极极化电动势是阴极氢析出时的超电位与阳极氧极出时的超电位之和。因此,水电解电压U可表示为:

式中U0——水的理论分解电压,V;

I——电解电流,A;

R——电解池的总电阻,Ω;

——氢超电位,V;

——氧超电位,V。

从能量消耗的角度看,应该尽可能地降低电解电压。下面讨论影响电解电压的几个因素:

(1)水的理论分解电压UO。热力学的研究得出:原电池所做的最大电功等于反应处由能变的减少,即:

式中

——标准状态下电池反应的吉布斯自由能变,J/mol;

n——反应中的电子转移数;

F——法拉第常数,96500C/mol;

E0——标准状态下反应的标准电动势,V。

在生成水的化学反应中,自由能变为-474.4kJ/mol,即

2H2(g)+O2(g)

=2H2O (1)

这是一个氧化还原反应,在两个电极上的半反应分别为:

O2+4H++4e=2H2O

2H2=4H++4e

电子转移数n=4,由=-NFE0得

-474.4×103=--4×96500E0

可见,在0.1MPa和25℃时,U0=1.23V;它是水电解时必须提供的最小电压,它随温度的升高而降低,随压力的升高而增大,压力每升高10倍,电压约增大43mV.

(2) 氢、氧超电位

和。影响氢、氧超电位的因素很多。首先,电极材料和电极的表面状态对

它的影响较大,如铁、镍的氢超电位就比铅、锌、汞等低,铁、镍的氧超电位也比铅低。与电解液接触面积越大或电极表面越粗糙,产生的氢、氧超电位就越小。其次,电解时的电流密度增大,超电位会随之增大,温度的上升也会引起超电位的增大。此外,超电位还与电解质的性质、浓度及溶液中的杂质等因素有关,如在镍电极上,稀溶液的氧超电位大于浓溶液的氧超电位。

为了降低氢、氧超电位,可以采取一些方法。如提高工作温度及采用合适的电极材料等。此外,适当增大电极的实际表面积或使电极表面粗糙,都可在不同程度上降低电极电阻和超电位,从而达到降低工作电压的目的。

(3)电阻电压降。电解池中的总电阻包括电解液的电阻、隔膜电阻、电极电阻和接触电阻等,其中前两者为主要因素。隔膜电阻电压降取决于材料的厚度和性质。采用一般的石棉隔膜,电流密度为2400A/m2时,隔膜电阻上的电压降约为0.25~0.30V,当电流密度再增大时,该电压降还会增大到0.5V左右。电解液的导电率越高,电解液中的电压降就越小。对电解液来说,除要求其电阻值小以外,还要求它在电解电压下不分解;不因挥发而与氢、氧一并逸出;对电解池材料无腐蚀性;当溶液的pH值变化时,应具有一定的缓冲性能。

多数的电解质在电解时易分解,不宜在电解水时采用。硫酸在阳极生成过硫酸和臭氧,腐蚀性很强,不宜采用。而强碱能满足以上要求,所以工业上一般都以KOH或NaOH水溶液作为电解液。KOH的导电性能比NaOH好,但价格较贵,在较高温度时,对电解池的腐蚀作用亦较NaOH的强。过去我国常采用NaOH作电解质,但是,鉴于目前电解槽的材料已经能抗KOH的腐蚀,所以,为节约电能,已经普遍趋向采用KOH溶液作为电解液。

此外,在电解水的过程中,电解液中会含有连续析出的氢、氧气泡,使电解液的电阻增大。电解液中的气泡容积与包括气泡的电解液容积的百分比称作电解液的含气度。含气度与电解时的电流密度,

电解液粘度、气泡大小、工作压力和电解池结构等因素有关。增加电解液的循环速度和工作压力都会减少含气度;增加电流密度或工作温度升高都会使含气度增加。在实际情况下,电解液中的气泡是不可避免的,所以电解液的电阻会比无气泡时大得多。当含气度达到35%时,电解液的电阻是无气泡时的2倍。

降低工作电压有利于减少电能消耗,为此应采取有效措施来降低氢、氧超电位和电阻电压降。一般情况下,在电流较小时,前者是主要因素;而在电流较大时,后者将成为主要因素。

电解槽在高工作压力下运行时,电解液含气度降低,从而使电解液电阻减小,为此已经研制出可在3MPa压力下工作的电解槽。但是工作压力也不宜过高,否则会增大氢气和氧气在电解液中的溶解度,使它们通过隔膜重新生成水,从而降低电流效率。提高工作温度同样可以使电解液电阻降低,但随之电解液对电解槽的腐蚀也会加剧。如温度大于90℃时,电解液就会对石棉隔膜造成严重损害,在石棉隔膜上形成可溶性硅酸盐。为此,已经研制出了多种抗高温腐蚀的隔膜材料,如镍的粉末冶金薄片和钛酸钾纤维与聚四氟乙烯粘结成的隔膜材料,它们可以在150℃的碱液中使用。为了降低电解液的电阻,还可以采取降低电解池的电流密度,加快电解液的循环速度,适当减小电极间距离等方法。

四、制氢设备的制氢量衡算和电能消耗

1、法拉第定律

电解水溶液制氢时,在物质量上严格遵守法拉第定律:各种不同的电解质溶液,每通过96485.309C的电量,在任一电极上发生得失1 mol电子的电极反应,同时与得失1 mol电子相对应的任一电极反应的物质量亦为1mol。

F=96485.309C/mol称为法拉第常数,它表示每摩尔电子的电量。在一般计算中,可以近似取F=96500C/mol。根据拉第定律,可以得到下式:

M=kIt=kQ

式中 k——表示1h内通过1A电流时析出的物质量,g/(A·h);

I——电流,A;

t——通电时间,h;

m——电极上析出的物质的质量,g;

Q——通过电解池的电荷量,A·h。

由于库仑单位很小,所以工业上常用的电荷量单位是安培·小时,它与法拉第常数F的关系是: 1F=96500/3600=26.8 A·h

2、制氢量衡算

从法拉第定律可知,26.8A·h电荷量能产生0.5mol的氢气,在标准状态下,0.5mol氢气占有的体积是11.2L,则1A·h电荷量在一个电解小室的产气量应为

(A·h) 如果考虑电流效率,那么每台电解槽每小时的实际产氢量应为:

m3

式中 m——电解槽的电解小室数,

m=

I——电流,A;

t——通电时间,h;

——电流效率,%。

同样地,可以计算出氧气的产气量,它正好是氢气产气量的1/2。

3、电能的消耗

电能消耗W与电压U和电荷量Q成正比,即

W=QU

根据法拉第定律,在标准状况下,每产生1m3的氢气的理论电荷量Q0为:

因此,理论电能消耗W0为:

式中:U0为水的理论分解电压,U0=1.23V。

在电解槽的实际运行中,其工作电压为理论分解电压的1.5~2倍,而且电流效率也达不到100%,所以造成的实际电能消耗要远大于理论值。目前通过电解水装置制得1m3氢气的实际电能消耗为

4.5~5.5kW·h。

4、电解用水消耗

电解用水的理论用量可用水的电化学反应方程计算:

2×18g 2×22.4L

X g 1000L

式中:x为标准状况下,生产1m氢气时的理论耗水量,g;22.4L为1mol氢气在标准状况下的体积。

x/18=1000/22.4 x=804g

在实际工作过程中,由于氢气和氧气都要携带走一定的水分,所以实际耗水量稍高于理论耗水量。目前生产1m氢气的实际耗水量约为845~880g。

本文摘自《电解水制氢的原理》博文资讯 浙江省玉环县爱力铸造设备有限公司 企业博客,对作者之渊博学识致谢。 33

范文九:甲醇制氢替代水电解制氢可行性研究

甲醇制氢替代水电解制氢可行性研究

PTA生产中心现有五套水电解制氢装置,设计总制氢能力为800Nm3/h。目前,PTA一、二装置氢气使用量大约在650Nm3/h左右。水电解制氢工艺简单,生产运行控制比较平稳。但由于水电解过程中需要消耗大量的电能,加上由于煤炭价格的上涨因素导致发电成本不断攀升,进而电价不断提高。因此,使用氢气用量大的化工及电子生产企业纷纷将目光瞄向制氢成本相对低廉的甲醇裂解制氢、天然气转化制氢上来。尤其在2002年以来新上马的国内PTA生产企业,基本上都淘汰了水电解工艺,而采用甲醇制氢或天然气制氢生产工艺。 一、 制氢工艺简介 1、

天然气转化制氢

天然气经过压缩,送到转化炉的对流段预热,经脱硫处理后与水蒸气混合,在进入转化炉对流段,被烟气间接加热到400℃以上后进入反应炉炉管,在催化剂作用下,同时发生蒸汽转化反应以及部分一氧化碳变换反应,生产氢气、一氧化碳、二氧化碳和未转化的残余甲烷,出口温度一般维持在780℃,氢含量约70%。经废热锅炉回收热量冷却后,转化气送入PSA(变压吸附)提氢装置,可以得到高纯度的氢气。

主要反应有:CH4+H2O=CO+3H2-49.3KJ/mol

CO+ H2O=CO2+H2-9.8KJ/mol

总反应为: CH4+2H2O=CO2+4H2-39.5KJ/mol 主要工艺流程:

2、 甲醇裂解制氢

甲醇和水的混合液经过预热、汽化、过热后,进入转化反应

器,在催化剂的作用下,同时发生甲醇的催化裂解反应和一氧化碳的变换反应,生产约75%的氢气和约25%左右的二氧化碳以及少量的杂质。裂解混合气再经过PSA(变压吸附)提纯净化,可以得到纯度为98.5%~99.999%的氢气。

主要反应有:CH3 OH =CO+2H2-90.7KJ/mol

CO+ H2O=CO2+H2+41.2KJ/mol

总反应为: CH3 OH +H2O=CO2+3H2-49.5KJ/mol 主要工艺流程: 3、

水电解制氢(略)

二、 制氢比较(以1000Nm3氢气为基础) 1、

消耗指标

2、 主要生产设备

天然气转化的核心设备为转化炉,目前广泛使用的炉型有顶烧和底烧两种。甲醇裂解的核心设备为甲醇裂解反应器,该反应器为列管式结构。水电解制氢的核心设备为电解槽。

3、 经济效益比较

制氢装置规模为1000Nm3/h,PSA部分的氢气回收率按89%

考虑。固定资产折旧年限为15年,残值率取4%,折旧费和修理费分别为固定资产的6.4%和2%。生产装置定员16人,人均工资及附加20000元/年,其它制造费用定额3000元/年.人。

各种原材料的价格(不含税价):

天然气 2.4元/Nm3 甲醇 3400元/t 循环水 0.4元/t 脱盐水 4元/t 电 0.50元/kwh 蒸汽 80元/t 压缩空气 0.1元/Nm3

具体如下(水电解成本参照厂成本核算,电0.326元/kwh):

4、 综合比较

① 水电解制氢工艺简单,生产运行过程比较平稳。受电价的影响,生产运行成本相比甲醇制氢及天然气制氢较高。

② 甲醇裂解工艺简单,操作方便,运行成本比水电解制氢略低,但较天然气转化略高,但投资额最低。甲醇裂解特别适用于中、小型用户。但原料甲醇的价格波动比较大,由于受国际原油市场价格的影响,2006年甲醇的市场价格比2002年上涨一倍以上。目前市场价格维持在3400-3600元/吨之间。

③ 天然气转化相对工艺比较复杂,投资额偏高,但运行成本相比水电解制氢及甲醇制氢来说最低,成本受装置规模的影响比较大,目前更多地用于大规模氢气用户。 5、

结论

PTA生产中心现有的五套水电解制氢装置,虽然是耗电大户,但由于公司内部核算电价只有0.326元/kwh,相比市场电价差距较大。如按市场工业平均电价0.65元/kwh计算。新建一套1000 Nm3的甲醇制氢装置,需要三年收回全部投资,而按公司内部核算电价计算,则需要六年才能收回投资。

甲醇制氢工艺技术比较成熟,一次性投资低于水电解制氢,但甲醇的市场价格受国际原油市场的影响比较大。就PTA生产中心来说,如果将PTA一、二装置的副产物醋酸甲酯回收水解后生成甲醇及醋酸。再将甲醇用来制氢,相信氢气生产成本就会得到大幅度的降低。目前该项技术在厦门翔鹭PTA项目已得到成功运用,而浙江逸盛PTA也正在做这方面的改造工作。

天然气制氢虽然生产成本较低,但一次性投资较大,加上天然气的供应问题难以解决。要在仪化上天然气制氢项目至少目前时机还不成熟。

总之,就目前情况来说,要用甲醇取代水电解制氢装置,一是投资回收周期较长,二是水电解制氢装置现有的设备与几乎没有再利用到甲醇制氢装置上的可能性,原有制氢设备浪费太大。加上降低氢气生产成本并不是太明显,因此如果进行技改或更新目前还不具备条件。但如果新上一套PTA项目,而选择制氢工艺时,甲醇制氢不失为首选。

范文十:光解水制氢

光解水制氢

近几十年来,随着全球能源需求的持续增长,寻找新能源的研究越来越受到人们的关注。氢能,它作为二次能源,具有清洁、高效、安全、可贮存、可运输等诸多优点,已普遍被人们认为是一种最理想的新世纪无污染的绿色能源,因此受到了各国的高度重视。自1972年日本东京大学Fujishima A和Honda K两位教授首次报导TiO2单晶电极光催化分解水从而产生氢气这一现象后,揭示了利用太阳能直接分解水制氢的可能性,开辟了利用太阳能光解水制氢的研究道路。随着电极电解水向半导体光催化分解水制氢的多相光催化(heterogeneous photocatalysis)的演变和TiO2以外的光催化剂的相继发现,兴起了以光催化方法分解水制氢(简称光解水)的研究,并在光催化剂的合成、改性等方面取得较大进展。本文概括众多的研究论文,就该领域的最新研究进展作一综述。

1. 光解水的原理

光催化反应可以分为两类“降低能垒”(down hil1)和“升高能垒”(up hil1)反应。光催化氧化降解有机物属于降低能垒反应,此类反应的△G0(△G=237 kJ/mo1),此类反应将光能转化为化学能。 要使水分解释放出氢气,热力学要求作为光催化材料的半导体材料的导带电位比氢电极电位EH+/H2稍负,而价带电位则应比氧电极电位Eo2/H2O稍正。光解水的原理为:光辐射在半导体上,当辐射的能量大于或相当于半导体的禁带宽度时,半导体内电子受激发从价带跃迁到导带,而空穴则留在价带,使电子和空穴发生分离,然后分别在半导体的不同位置将水还原成氢气或者将水氧化成氧气。Khan等提出了作为光催化分解水制氢材料需要满足:高稳定性,不产生光腐蚀;价格便宜;能够满足分解水的热力学要求;能够吸收太阳光。

2 光催化剂的研究

2.1 钽酸盐

钽酸盐ATaO3(A =Li,K) ,A2SrTa2O7 · nH2O (A = H, K, Rb) 等虽然化学成分不同,但是它们的晶体结构类似,共同点是都具八面体TaO6。Kato H等对钽酸盐系列的LiTaO3 、NaTaO3、KTaO3的光催化活性进行了研究,发现无负载的LiTaO3、NaTaO3在紫外光的照射下均取得了较好的光催化效果,而负载NiO的NaTaO3,在紫外光的照射下,其分解水的活性显著提高,量子效率达到了28%,然而当LiTaO3和KTaO3负载NiO后,其光催化活性反而降低了,其原因可从钽酸盐的导带位置得到解释,NaTaO3的导带位置比NiO的导带高,因此,在NaTaO3的导带产生的光生电子很容转移到NiO

的导带上,从而增强了电子和空穴的分离,提高了光催化活性。KTaO3的导带位置比NiO的导带位置低,不能产生这种效果;而LiTaO3在负载NiO以后,Li+掺杂到NiO当中,造成NiO催化剂的失活,使LiTaO3的光催化活性降低了。Kudo A发现碱金属、

碱土金属钽酸盐作为一种在紫外光线下分解水的催化材料,在没有负载物的条件下表现出很高的活性,在该类催化剂中掺杂La后,NiO / NaTaO3表现出最高的活性。Ikeda S等用水热法合成了Ca2Ta2O7、Na2Ta2O6、K2Ta2O6,将负载NiO的Ca2Ta2O7和纯Ca2Ta2O7分别放在0.1 mmol dm3的NaOH溶液中,通过紫外光的照射,发现到反应结束时,NiO/Ca2Ta2O7比纯Ca2Ta2O7节省了6小时,反应前后分别用XRD进行分析,表明Ca2Ta2O7没有发生晶型结构变化。将NiO/Na2Ta2O6、 NiO/ K2Ta2O6 、NiO/ Ca2Ta2O7三者进行对比实验,发现NiO/ Na2Ta2O6 和NiO/K2Ta2O6比NiO/ Ca2Ta2O7的催化能力强,这可能是由于Ca2Ta2O7的能隙比Na2Ta2O6、K2Ta2O6的窄,也可能是由于Ca2Ta2O7的晶体化程度没有Na2Ta2O6、K2Ta2O6高。Yoshioka K等研究了SrTa2O6、Sr4Ta2O9、Sr5Ta4O15 、Sr2Ta2O7 对水的催化活性,发现它们的催化活性依次为Sr2Ta2O7 > Sr5Ta4O15 > SrTa2O6 > Sr4Ta2O9,这主要是由于它们的晶型结构的不同。

2.2 铌酸盐

方亮等在BaO—La2O3一TiO2一Nb2O5 体系中合成的具有5层类钙钛矿结构的新铌酸Ba5LaTi2Nb3O18,X射线单晶衍射结果表明,

Ba5LaTi2Nb3O18晶体为三方晶系,晶胞参数a=0.57325(2)nm,

c=4.2139(2)nm,Z=3,理论密度6.181g/cm3。[(Nb,Ti)O6]八面体共用角顶联结,在C轴方向上由5个八面体高构成平行于(001)面的类钙钛矿层,2个类钙钛矿层之间通过Ba原子联结形成三维结构。K4Nb6O17由NbO6八面体单元通过氧原子形成二维层状结构的能隙由O的2p轨道决定的价带能级和Nb的3d轨道决定的导带能级所决定,在光催化过程中催化剂受到能量大于其能隙的光子辐射后,价带电子发生跃迁,在半导体粒子中产生电子-空穴对,从而发生氧化还原反应。K4Nb6O17结构上最特别的是交替地出现两种不同的层空间一层间I和层间II。层间I中K+能被Li+ 、Na+和一些多价阳离子所替代,而在层间II中的K仅能被Li 、Na 等一价阳离子交换。另外一个特征是,K4Nb6O17的层间空间能自发地发生水合作用。这种材料在高湿度的空气和水溶液中容易发生水合。这表明,反应物分子水在光催化反应中容易进入层状空间。Unal U等用ESD(Electrostatic

self-assembly deposition)的方法将Ru(bpy)32+置入层状K4Nb6O17的夹层中,使其吸收带发生红移,在可见光的照射下可以产生光电流。在水和甲醇混合溶液中,通过可见光照射,可以产生H2。

2.3 钛酸盐

在钛酸盐这类化合物中,TiO8八面体共角或共边形成带负电的层状结构,带正电的金属离子填充在层与层之间,而扭曲的TiO8八面体被认为在光催化活性的产生中起着重要作用。YuWei T等将Au负载到K2La2Ti3O10上用于光解水反应,研究发现负载Au的K2La2Ti3O10光催化活性显著增强,而且发现产氢率在紫外区域较底,在可见光区域较高。Yanagisawa等把K2CO3、TiO2、CuO按1:2.5(1-x):2.5的比例,在1200oC下反应5h,然后在1mol/L 的 HCl中进行离子交换,制成Cu2+掺杂的H2Ti4O9。随着Cu2+ 含量的增加,Cu2+掺杂的H2Ti4O9逐渐由单斜晶系变为斜方晶系。实验证明,单斜晶系的催化活性高于斜方晶系。在波长大于400nm的可见光辐射下,当Cu2+含量为0.43wt%时,从Na2S溶液中分解产生H2的速率最大。如果催化剂的层间有Pt柱时,其光催化活性可以大大增强,甚至可以将纯水分解成化学计量比的H2和O2。这是因为在半导体柱和母层之间的电子转移发生得很快,可以有效地实现电子空穴对的分离,从而增强光催化活性。Machida M等通过分步交换的方法用过渡金属部分取代三钛酸盐和四钛酸盐中的一部分钛制得多孔柱状光催化材料Na2Ti3-x MxO7和

K2Ti4-xMxO9(M =Mn、Fe、Co、Ni、Cu,x≤0.3),用于光催化分解水。Jinshu W等合成同时掺杂La和N 的SrTiO3,并用波长在290—400nm的光照射,发现掺杂La和N的SrTiO3光催化活性是纯SrTiO3的2.6倍。

2.4 多元硫化物

ZnSeS类化合物能够形成固溶体,且能隙较窄,许云波等采用化学共沉淀法制备了掺杂Cu、In的ZnSeS光催化剂,研究发现:在ZnSeS中掺杂Cu、In的摩尔分数为2%时其光吸收性能最好,最大吸收边红移至700nm;紫外光照射下该催化剂光分解水产氢的量子效率达到4.83%;催化剂具有良好的热稳定性和光学稳定性,反应100h其产氢性能没有衰减。具有立方晶型的Znln2S4,其带宽为2.3eV,具有可见光响应特征,且稳定性良,可用作光催化材料。Lei Z..等通过水热合成法制备了高比表面积的立方尖晶石结构的Znln2S4,负载2%Pt后在0.43mol/LNa2S-0.5mol/L Na2SO3溶液中的产氢率最大可达213µmol/h。Kudo A.等研究发现AgInZn7S9在无Pt助催化剂的情况下,可受可见光激发从含有SO32-或S2-的水溶液中制氢;负载Pt后催化活性更佳,最大产氢率可达970µmol/h。杨运嘉制备了Zn0.957Cu0.043S 和Zn0.999Ni0.001S,其中

Zn0.957Cu0.043S在可见光照射下,自K2SO3和Na2S

水溶液中释放出H2,Zn0.999Ni0.001S在N2流下、于770K热处理也可自K2SO3和Na2S水溶液中释放出H2。文丽荣等制备C60水溶液后,将其与Zn0.999Ni0.001S混合,并采用气相色谱法跟踪反应,发现氢气释放量是未加C60时的4倍多。由于C60为强电负性物质,与Zn0.999Ni0.001S混合后,可作为电子的浅势捕获阱,有效地抑制了电子和空穴的复合,从而促进了反应的发生。

3 提高光催化剂性能的途径

3.1 光催化剂纳米化

纳米微粒由于尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。纳米半导体比常规半导体光催化活性高得多,原因在于:由于量子尺寸效应使其导带和价带能级变成分立能级,能隙变宽,导带电位变得更负,而价带电位变得更正,这意味着纳米半导体粒子具有更强的氧化或还原能力。纳米TiO2粒子不仅具有很高的光催化活性,而且具有耐酸碱腐蚀和光化学腐蚀、成本低、无毒,这就使它成为当前最有应用潜力的一种光催化剂。

3.2 离子掺杂

离子的掺杂产生离子缺陷,可以成为载流子的捕获阱,延长其寿命。离子尺寸的不同将使晶体结构发生一定的畸变,晶体不对性增加,提高了光生电子-空穴分离效果。赵秀峰等制备了掺杂铅的TiO2薄膜。研究发现,铅的掺杂使薄膜的吸收带边发生不同程度的红移。Yanqin W等用水热法和溶胶-凝胶法合成了La3+离子掺杂的TiO2纳米粒子,并对其进行光电化学行为研究,发现掺杂0.5%mol La3+离子的TiO2电极,其光电转换效率大大高于纯TiO2电极的光电转换效率。

相对于金属离子掺杂,非金属离子掺杂光催化剂的研究较少。Asahi等日本学者报道的氮掺杂TiO2,才真正引起了人们对非金属离子掺杂光催化剂的广泛兴趣。Shahed等 通过控制CH4和O2流量,以近850℃的火焰灼烧0.25mm钛片,获得了真正意义上的C4-掺杂TiO2膜CM-TiO2。XRD谱图显示掺杂膜中TiO2主要以金红石形式存在,谱图中没有出现Ti-C的衍射峰;XPS结果表明所制备的改性膜的TiO2组成可表达为TiO1.85 C0.15 。在光吸收性能方面由UV-Vis实验证实CM-TiO2对可见光有明显的吸收,并具有两个吸收带边,分别位于440和535nm,对应2.82eV和2.32eV的禁带宽度。CM-TiO2,可在150W氙灯照射下光解水,并按照2:1的摩尔比生成H2和O2。

3.3 半导体复合

近几年来,对半导体复合进行了许多研究,复合半导体使吸收波长大大红移,催化活性提高,这可归因于不同能级半导体间光生载流子易于分离。此外,复合半导体的晶型结构也使光催化活性得到提高。柳清菊等 采用溶胶-凝胶法及浸渍提拉法在普通的载玻片上制得了TiO2/Fe2O3复合薄膜,分析结果表明:复合薄膜均优于纯TiO2薄膜的光催化活性,Fe2O3的摩尔含量为0.5%时光催化活性最好。李昱昊等采用浸渍法制备了CdS/TiO2复合半导体光催化剂,对样品的表面组成及光吸收特性进行了分析,结果表明,样品中的硫主要以CdS形式存在,其外层包裹了一层CdSO4;由于在TiO2表面修饰了CdS,使样品的吸收带边由400nm(3.1eV)红移至

530nm(2.3eV)。梅长松等用溶胶-凝胶和浸渍-还原相结合方法制得

M/WO3-TiO2(M=Pd,Cu,Ni,Ag)光催化剂,分析结果表明,金属负载在复合半导体上延迟了TiO2由锐钛矿向金红石相转化,增强W与载体TiO2的相互作用,使TiO2对可见光部分的吸收明显增加;固体材料吸光性能强弱顺序Pd/WO3-TiO2>Cu/WO3-TiO2>Ag/WO3-TiO2>Ni/WO3 -TiO2。

3.4 染料光敏化

光活性化合物吸附于光催化剂表面,利用这些光活性物质在可见光下有较大的激发因子的特性,只要活性物质激发态电势比半导体导带电势更负,就可能将光生电子输送到半导体材料的导带,从而扩大激发波长范围,增加光催化反应的效率。常用的光敏化剂包括菁染料、酞菁、 香豆素、叶绿素、曙红、联吡啶钌等。Stergiopoulos T.等考察了商用有机钌N3和两种新型染料Ru (dcmpp) (debpy)CI(PF6)(简写为Ru-CI)和Ru(dcmpp) (debpy) NCS(PF6)(简写为Ru-NCS)的光谱性质和在二氧化钛表面的化学吸附性能,分别以这3种有机钌作敏化剂,组装了3种纳米晶TiO2太阳能电池,研究了相应太阳能电池的光电性能。结果表明,这3种敏化剂对可见光均有良好的吸收,吸收波长拓展到700nm 以上,在整个太阳光波长范围内,N3敏化电极对光的吸收强度最大。

3.5 贵金属沉积

常用的沉积贵金属主要是第Ⅷ族的Pt、Ag、Ir、Au、Ru、Pd、Rh等。在催化剂的表面沉积适量的贵金属有利于光生电子和空穴的有效分离以及降低还原反应(质子的还原、溶解氧的还原)的超电压,从而大大提高催化剂的活性。实际上,当半导体表面和金属接触时,载流子重新分布,电子从费米能级较高的n-半导体转移到费米能级较低的金属,直到它们的费米能级相同,从而形成肖特基势垒( schottky barrier) ,正因为肖特基势垒成为俘获激发电子的有效陷阱,光生载流子被分离,从而抑制了电子和空穴的复合。半导体的表面覆盖率往往是很小的,例如负载10%的Pt(wt),只有6%的半导体表面被覆盖。金属TiO2,表面的沉积量必须控制在合适的范围内,沉积量过大有可能使金属成为电子和空穴快速复合的中心,从而不利于光催化反应。井立强等在ZnO纳米粒子的表面沉积适量的贵金属Pd或Ag后,其光催化活性大幅度提高。对于贵金属Pd来说,最佳沉积量为0.5%,对于贵金属Ag来说,最佳沉积量为0.75%。

3.6 电子捕获剂

光激发产生的电子和空穴主要经历捕获和复合两个相互竞争的过程。因此选用适当的电子捕获剂捕获电子,使复合过程受到抑制,是提高光催化活性的一个重要途径。将适当的电子捕获剂预先吸附在催化剂的表面,界面电子传递和被捕获过程就会更有效,更有竞争力。一般可以加人O2、H2O2和过硫酸盐等电子捕获剂,可以捕获光生电子,降低光生电子和空穴的复合,提高光催化率。

3.7 表面螯合及衍生作用

常用螯合剂包括:含硫化合物、OH-、EDTA、等。光催化剂表面的部分金属离子与某种螯合剂发生螯合作用或生成衍生物,改善界面电子转移效果,同时螯合剂通过表面共价结合形成光催化体系,改变了光催化剂的能带位置,增强对可见光区域光的吸收,提高光催化剂的催化活性。

3.8 外场耦合外场耦合是利用外场与光场的耦合效应来提高光催化反应的性能。外场包括热场、电场、微波场、超声波场等。热场是通过提高反应体系温度的来提高反应的速率,增加催化剂的光吸收。电场是在光电催化反应体系中,半导体/电解质界面空间电荷层的存在有利于光生载流子的分离,而光生电子和空穴注入溶液的速度不同,电荷分离的效果也不同,为了及时驱走半导体颗粒表面的光生电子,可以通过向工作电极施加阳极偏压来实现,从而提高界面的氧化效率。微波场可以增加催化剂的光吸收,抑制载流子的复合,促进表面羟基生成羟基自由基。超声波利用声波的造穴作用,也就是溶液中气泡的形成、成长和内爆气泡的爆裂导致体系局部的高能状态:高温、高压以及放电效应和等离子效应。

4 结 语

迄今为止,人们所研究和发现的光催化剂和光催化体系仍然存在诸多问题,如光催化剂大多仅在紫外光区稳定有效,能够在可见光区使用的光催化剂不但催化活性低,而且几乎都存在光腐蚀现象,需使用牺牲剂进行抑制,能量转化效率低,这些阻碍了光解水的实际应用。光解水的研究是一项艰巨的工作,虽然近期取得了一些进展,但是还有很多工作需要进一步研究,如研制具有特殊结构的新型光催化剂、新型的光催化反应体系,对提高光催化性剂性能的方法进行更加深入的研究等,这些都是今后光解水的研究重点。